Consider strings of characters, where each character is one of the 26 lowercase letters $a,b,c,\dots,z$.
Such a string is called $qq$-free, if it does not contain two $q$'s next to each other.
For any integer $n \geq 1$, let $Q_n$ be the number of $qq$-free strings of length $n$.
Which of the following is true for any integer $n \geq 3$?