Let $n \geq 2$ be an integer. Consider a string $c_1,c_2,...,c_n$ of length $n$, in which each character
$c_i$ is a uniformly random element of the set $\{1,2,3\}$ (independently of all other characters).
Consider the random variable $X$ whose value is the number of indices $i$ with $1 \leq i < n$ for
which the product $c_i \cdot c_{i + 1}$ is odd.
What is the expected value $\mathbb{E}(X)$ of the random variable $X$?
Hint: Use indicator random variables.