We need to determine the number of different seating arrangements.
$ \binom{n}{k} \cdot (k-1)! $
$ \frac{n!}{k!(n-k)!} \cdot (k-1)! $
$ \frac{n!}{k!(n-k)!} \cdot \frac{(k-1)!}{1} $
$ \frac{n!}{k(k-1)!(n-k)!} \cdot \frac{(k-1)!}{1} $
$ \frac{n!}{k(n-k)!} $