Solution: 2014 Winter Midterm - 13 
 Author: Michiel Smid   Question
    
Let $B_n$ be the number of bitstrings of length $n$ that do not contain 111. Which of the following
		is true?
     
(a)
 $B_n = B_{n-1} + B_{n-2} + 2^{n-3} - B_{n-3}$
   
(b)
 $B_n = B_{n-1} + B_{n-2} + 2^{n-3}$
   
(c)
 $B_n = B_{n-1} + B_{n-2} + B_{n-3} + 2^{n-4}$
   
(d)
 $B_n = B_{n-1} + B_{n-2} + B_{n-3}$
           Solution
  We can write down some valid possibilities first.
$0, B_{n-1}$ possibilities left
$1,0, B_{n-2}$ possibilities left
$1,1,0, B_{n-3}$ possibilities left
Once we add up all possibilities, we get $B_n = B_{n-1}+B_{n-2}+B_{n-3}$