Solution: 2014 Winter Midterm - 13
Author: Michiel Smid Question
Let $B_n$ be the number of bitstrings of length $n$ that do not contain 111. Which of the following
is true?
(a)
$B_n = B_{n-1} + B_{n-2} + 2^{n-3} - B_{n-3}$
(b)
$B_n = B_{n-1} + B_{n-2} + 2^{n-3}$
(c)
$B_n = B_{n-1} + B_{n-2} + B_{n-3} + 2^{n-4}$
(d)
$B_n = B_{n-1} + B_{n-2} + B_{n-3}$
Solution
We can write down some valid possibilities first.
$0, B_{n-1}$ possibilities left
$1,0, B_{n-2}$ possibilities left
$1,1,0, B_{n-3}$ possibilities left
Once we add up all possibilities, we get $B_n = B_{n-1}+B_{n-2}+B_{n-3}$