Back

Solution: 2014 Winter Midterm - 15

Author: Michiel Smid

Question

We choose a bitstring of length 25 uniformly at random. What is the probability that this string contains at least two 1s?
(a)
$\sum_{k=2}^{25} {{25}\choose{k}}(1/2)^{k}$
(b)
$1 + (1/2)^{25} - 25(1/2)^{25}$
(c)
$1 - (1/2)^{25} - 25(1/2)^{25}$
(d)
none of the above

Solution

$S$ = You pick any 25 bitstring = $2^{25}$

$A$ = You pick a single 1 = $\binom{25}{1}$

$B$ = You pick no 1s = $\binom{25}{0}$

All possibilities that don’t include zero 1s or a single 1 = $|S| - |A| - |B|$

$= 2^{25} - \binom{25}{1} - \binom{25}{0}$

$= 2^{25} - \binom{25}{24} - \binom{25}{25}$

$= 2^{25} - 25 - 1$

Probability = $\frac{2^{25} - 25 - 1}{2^{25}}$

$= \frac{2^{25}}{2^{25}} - \frac{25}{2^{25}} - \frac{1}{2^{25}}$

$= 1 - \frac{25}{2^{25}} - \frac{1}{2^{25}}$