Back

Solution: 2015 Fall Final - 16

Author: Michiel Smid

Question

You are given that:
  • The course COMP 9999 runs over a period of one year, starting on January 1 and ending on December 31. There is one lecture every day; thus, the total number of lectures is 365.
  • Dania and Nick take this course. Dania's birthday is on November 19. Nick's birthday is on December 3.
  • Professor G. Ruesome teaches the course. Professor Ruesome decides to have 20 quizzes during the year. For this, he chooses a uniformly random subset of 20 days; the quizzes will be on the 20 chosen days. (It is possible that there is a quiz on January 1.)
Determine the conditional probability $\Pr(B|C)$, where $B$ and $C$ are the events
  • B = "there is a quiz on Nick's birthday",
  • C = "there are exactly 5 quizzes in December".
(a)
5/32
(b)
5/31
(c)
4/31
(d)
4/32

Solution

  • Let's determine C
    We choose 5 of the 31 days in December: $ \binom{31}{5} $
    The remaining 15 quizzes can be on any of the 334 days in the year: $ \binom{334}{15} $
    $ |C| = \binom{31}{5} \cdot \binom{334}{15} $
    $ Pr(C) = \frac{\binom{31}{5} \cdot \binom{334}{15}}{\binom{365}{20}} $
  • Let's determine $ B \cap C $
    1 of the days in December is Nick's birthday, so that's fixed: 1
    We choose 4 of the remaining 30 days in December: $ \binom{30}{4} $
    The remaining 15 quizzes can be on any of the 334 days in the year: $ \binom{334}{15} $
    $ |B \cap C| = \binom{30}{4} \cdot \binom{334}{15} $
    $ Pr(B \cap C) = \frac{\binom{30}{4} \cdot \binom{334}{15}}{\binom{365}{20}} $
  • $ Pr(B|C) = \frac{Pr(B \cap C)}{Pr(C)} $
    $ Pr(B|C) = \frac{ \frac{\binom{30}{4} \cdot \binom{334}{15}}{\binom{365}{20}}}{ \frac{\binom{31}{5} \cdot \binom{334}{15}}{\binom{365}{20}}} $
    $ Pr(B|C) = \frac{\binom{30}{4}}{\binom{31}{5}} $
    $ Pr(B|C) = \frac{ \frac{30!}{4! \cdot 26!}}{ \frac{31!}{5! \cdot 26!}} $
    $ Pr(B|C) = \frac{30! \cdot 26! \cdot 5!}{4! \cdot 26! \cdot 31!} $
    $ Pr(B|C) = \frac{30! \cdot 5!}{4! \cdot 31!} $
    $ Pr(B|C) = \frac{30! \cdot 5 \cdot 4!}{4! \cdot 31 \cdot 30!} $
    $ Pr(B|C) = \frac{5}{31} $