Back

Solution: 2016 Fall Final - 13

Author: Michiel Smid

Question

Let $V$ be a set consisting of 12 even integers and 8 odd integers. We choose a uniformly random subset $W$ of $V$ having size 7. Define the event
  • A = "exactly 4 of the elements of $W$ are even".
What is $\Pr(A)$?
(a)
$\frac{{12 \choose 4}+{8 \choose 3}}{20 \choose 7}$
(b)
$\frac{{20 \choose 3}{17 \choose 4}}{20 \choose 7}$
(c)
$\frac{{12 \choose 4}{8 \choose 3}}{20 \choose 7}$
(d)
$\frac{{20 \choose 4}{16 \choose 3}}{20 \choose 7}$

Solution

  • Let's determine $ |V| $
    $ |V| = 20 $
  • Let's determine $ |W| $
    $ |W| = 7 $
  • Let's determine $ |A| $
    The number of ways to choose 4 even integers from 12 even integers: $ \binom{12}{4} $
    The number of ways to choose 3 odd integers from 8 odd integers: $ \binom{8}{3} $
    $ |A| = \binom{12}{4} \binom{8}{3} $
  • Let's determine $ Pr(A) $
    $ Pr(A) = \frac{\binom{12}{4} \binom{8}{3}}{\binom{20}{7}} $