Let's determine $ S $
S is the set of all possible outcomes of the 17 students
$ |S| = \binom{100}{17} $
Let's determine $ B $
B occurs when 4 is in the subset
We choose 4: 1
We choose 16 from the remaining 99: $ \binom{99}{16} $
$ |B| = 1 \cdot \binom{99}{16} $
$ Pr(B) = \frac{1 \cdot \binom{99}{16}}{\binom{100}{17}} $
Let's determine $ C $
C occurs when 7 is in the subset
We choose 17: 1
We choose 16 from the remaining 99: $ \binom{99}{16} $
$ |C| = 1 \cdot \binom{99}{16} $
$ Pr(C) = \frac{1 \cdot \binom{99}{16}}{\binom{100}{17}} $
Let's determine $ B \cap C $
We choose 17: 1
We choose 4: 1
We choose 15 from the remaining 98: $ \binom{98}{15} $
$ |B \cap C| = 1 \cdot 1 \cdot \binom{98}{15} $
$ Pr(B \cap C) = \frac{1 \cdot 1 \cdot \binom{98}{15}}{\binom{100}{17}} $