$\mathbf{Algorithm}\ \Fib(n)\mathrm{:}$
$\mathbf{if}\ n = 0\ \mathrm{or}\ n = 1$
$\mathbf{then}\ f = n$
$\mathbf{else}\ f = \Fib(n - 1) + \Fib(n - 2)$
$\mathbf{endif};$
$\mathbf{return}\ f$
We can draw a recursive tree to see how many calls there are to $ \text{FIB}(8) $.
We can see that there are 5 calls to $ \text{FIB}(8) $.