$ = \sum^{50}_{k=0} \binom{50}{k} {(5x)}^{n-k} {(-7y)}^k $
We only consider $k=26$, as it results in $y^{26}$.
$ = \binom{50}{26} \cdot {(5x)}^{50-26} \cdot {(-7y)}^{26} $
$ = \binom{50}{26} \cdot {(5)}^{24} \cdot x^{24} \cdot {(-7)}^{26} \cdot y^{26} $
$ = \binom{50}{26} \cdot 5^{24} \cdot 7^{26} \cdot x^{24} \cdot y^{26} $
Thus, the coefficient is $ \binom{50}{26} \cdot 5^{24} \cdot 7^{26} $