$ = \sum^{100}_{k=0} \binom{100}{k} {(7x)}^{n-k} {(-13y)}^{k} $
We only consider $k=80$, as it results in $y^{80}$.
$ = \binom{100}{80} \cdot {(7x)}^{100-80} \cdot {(-13y)}^{80} $
$ = \binom{100}{80} \cdot {(7)}^{20} \cdot x^{20} \cdot {(-13)}^{80} \cdot y^{80} $
$ = \binom{100}{80} \cdot 7^{20} \cdot 13^{80} \cdot x^{20} \cdot y^{80} $
Thus, the coefficient is $ \binom{100}{80} \cdot 7^{20} \cdot 13^{80} $