This means there are 13 positions
First, select 2 of the girls to be Elisa’s neighbors: $ \binom{6}{2} $
Since we’re putting 2 girls beside Elisa, girl 1 can be on the left and girl 2 can be on the right OR girl 1 can be on the right and girl 2 can be on the left: 2
As a single entity, the 3 girls can be placed, starting from position 0 to position 10: 11
The remaining 10 people can be placed in the remaining 10 positions: 10!
$ \binom{6}{2} \cdot 2 \cdot 11 \cdot 10! $
$ = \frac{6!}{2!4!} \cdot 2 \cdot 11 \cdot 10! $
$ = \frac{6!}{4!} \cdot 11 \cdot 10! $
$ = \frac{6 \cdot 5 \cdot 4!}{4!} \cdot 11 \cdot 10! $
$ = \frac{6 \cdot 5}{1} \cdot 11 \cdot 10! $
$ = 6 \cdot 5 \cdot 11 \cdot 10! $