We can break this down into 3 cases:
$ |A \cup B| = |A| + |B| - |A \cap B| $
$ |A \cup B| = \binom{n}{7} + \binom{n}{5} - 0 $
Thus, the number of bitstrings of length $ n $ that have exactly seven 0’s or exactly five 1’s is: $ \binom{n}{7} + \binom{n}{5} - 0$