Let $X_i$ be 1 if student $S_i$ gets their own backpack and 0 otherwise
$ Pr(X_i = 1) = \frac{1}{n} $
Now, we do this for every student
$ \mathbb{E}(X) = \mathbb{E}(X_1 + X_2 + \text{…} + X_n) $
$ \mathbb{E}(X) = \sum_{k=1}^{n} \mathbb{E}(X_i) $
$ \mathbb{E}(X) = \sum_{k=1}^{n} \frac{1}{n} $
$ \mathbb{E}(X) = \frac{n}{n} $
$ \mathbb{E}(X) = 1 $