Let’s find the first few values of $ g(n) $ to find a pattern:
$ g(0) = 1 $
$ g(1) = 2 \cdot g(0) = 2 $
$ g(2) = 2 \cdot g(1) = 4 $
$ g(n) = 2^n $
Now let’s find the formula for $ f(n) $:
$ f(0) = 3 $
$ f(1) = 5 + f(0) = 8 $
$ f(2) = 5 + f(1) = 13 $
$ f(n) = 5n + 3 $
Thus, $ f(g(n)) = 5 \cdot 2^n + 3 $.