We choose 15 of the 85 positions to be a: $ \binom{85}{15} $
We choose 30 of the 70 remaining positions to be d: $ \binom{70}{30} $
The remaining 40 positions can be any of the 2 letters: $ 2^{40} $
Thus, the total number of strings is $ \binom{85}{15} \cdot \binom{70}{30} \cdot 2^{40} $