$(5x - 7y)^{50}$
$ = \sum_{k=0}^{50} \binom{50}{k} (5x)^{k} (-7y)^{50-k}$
$ = \sum_{k=0}^{50} \binom{50}{k} 5^{k} x^{k} (-7)^{50-k} y^{50-k}$
$ = \binom{50}{24} 5^{24} (-7)^{26} x^{24} y^{26}$
$ = \binom{50}{24} 5^{24} (7)^{26} x^{24} y^{26}$
Thus, the coefficient of $x^{24}y^{26}$ in the expansion of $(5x - 7y)^{50}$ is $\binom{50}{24} 5^{24} (7)^{26}$.