Back

Question: 2014 Fall Midterm - 10

Author: Michiel Smid

The function $f : \mathbb{N} \rightarrow \mathbb{N}$ is defined by $$ f(0) = 8 $$ $$ f(n) = f(n - 1) + 6n - 8 \ \mathrm{for}\ n \geq 1 $$ What is $f(n)$?

a) $f(n) = 2n^{2} - 5n + 7$

b) $f(n) = 2n^{2} - 5n + 8$

c) $f(n) = 3n^{2} - 5n + 8$

d) $f(n) = 4n^{2} - 5n + 8$

The function $f : \mathbb{N} \rightarrow \mathbb{N}$ is defined by $$ \begin{align} f(0) &= 8 \\ f(n) &= f(n - 1) + 6n - 8\; \ \mathrm{for}\ n \geq 1 \end{align} $$ What is $f(n)$?
(a)
$f(n) = 2n^{2} - 5n + 8$
(b)
$f(n) = 2n^{2} - 5n + 7$
(c)
$f(n) = 3n^{2} - 5n + 8$
(d)
$f(n) = 4n^{2} - 5n + 8$