Let $b \geq 1$ and $g \geq 1$ be integers. Consider $b$ boys and $g$ girls. How many ways are there
to arrange these kids on a line such that the leftmost kid is a girl or the rightmost kid is a boy?
(a)
$(b+g)! - b \cdot (b+g-1)! -\ $ $ g \cdot (b+g-1)!$
(b)
$(b+g)!$
(c)
$g \cdot (b+g-1)! + b \cdot (b+g-1)!\ -$ $ b \cdot g \cdot (b+g-1)!$
(d)
$g \cdot (b+g-1)! + b \cdot (b+g-1)!\ -$ $ b \cdot g \cdot (b+g-2)!$