Back

Let $n \geq 2$ be an integer. How many bitstrings of length $n$ are there that contain at least two 1s?

a) ${n \choose 2} \cdot 2^{n-2}$

b) $n \cdot 2^{n-1}$

c) $2^{n} - 1 - n$

d) $2^{n} - n$

Solution: 2014 Fall Midterm - 1

Author: Michiel Smid

Question

Let $n \geq 2$ be an integer. How many bitstrings of length $n$ are there that contain at least two 1s?
(a)
${n \choose 2} \cdot 2^{n-2}$
(b)
$n \cdot 2^{n-1}$
(c)
$2^{n} - 1 - n$
(d)
$2^{n} - n$

Solution

We can break it down

Let U be the set of all possible n-length bitstrings: $|U|=2^n$

Let A be the set of all bitstrings with all 0’s: $|A|= $ n choose n zeros $\binom{n}{n}$

Let B be the set of all bitstrings no zeros: $(|B|= )$ n choose n-1 zeros $( = \binom{n}{n-1} )$

$|U| - |A| - |B| = 2^n - \binom{n}{n} - \binom{n}{n-1} = 2^n - \frac{n!}{n!0!} - \frac{n!}{(n-1)!1!} = 2^n - 1 - n$

We can also write it differently and get the same answer:

Let U be the set of all possible n-length bitstrings: $|U|=2^n$

Let A be the set of all bitstrings with zero 1’s: $|A|=$ n choose zero 1’s $= \binom{n}{0}$

Let B be the set of all bitstrings a single 1: $|B|=$ n choose a single 1 $= \binom{n}{1}$

$|U| - |A| - |B| = 2^n - \binom{n}{0} - \binom{n}{1} = 2^n - \frac{n!}{n!0!} - \frac{n!}{(n-1)!1!} = 2^n - 1 - n$