Let $n \geq 2$ be an integer. How many bitstrings of length $n$ are there that contain at least two 1s?
a) ${n \choose 2} \cdot 2^{n-2}$
b) $n \cdot 2^{n-1}$
c) $2^{n} - 1 - n$
d) $2^{n} - n$
We can break it down
Let U be the set of all possible n-length bitstrings: $|U|=2^n$
Let A be the set of all bitstrings with all 0’s: $|A|= $ n choose n zeros $\binom{n}{n}$
Let B be the set of all bitstrings no zeros: $(|B|= )$ n choose n-1 zeros $( = \binom{n}{n-1} )$
$|U| - |A| - |B| = 2^n - \binom{n}{n} - \binom{n}{n-1} = 2^n - \frac{n!}{n!0!} - \frac{n!}{(n-1)!1!} = 2^n - 1 - n$
We can also write it differently and get the same answer:
Let U be the set of all possible n-length bitstrings: $|U|=2^n$
Let A be the set of all bitstrings with zero 1’s: $|A|=$ n choose zero 1’s $= \binom{n}{0}$
Let B be the set of all bitstrings a single 1: $|B|=$ n choose a single 1 $= \binom{n}{1}$
$|U| - |A| - |B| = 2^n - \binom{n}{0} - \binom{n}{1} = 2^n - \frac{n!}{n!0!} - \frac{n!}{(n-1)!1!} = 2^n - 1 - n$