Consider 12 boys, 17 girls, and 25 dogs. How many ways are there to arrange them on a line if
a) $12! + 17! + 25!$
b) $2(12! + 17! + 25!)$
c) $(12!)(17!)(25!)$
d) $2(12!)(17!)(25!)$
We can break it down
Let B be the # of ways to place boys: $|B| = 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 12!$
Let G be the # of ways to place girls: $|G| = 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 17!$
Let D be the # of ways to place girls: $|D| = 25 \cdot 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 25!$
Imagine (B,D), and (G) are all groups. Boy group can’t be beside the girl group, so the arrangement will either be (BDG) or (GDB).
That’s 2 possible 2 combos of groups
$2 \cdot |B| \cdot |G| \cdot |D| = 2 \cdot 12! \cdot 17! \cdot 25! = 2(12!)(17!)(25!)$