Assume we obtain the Raven Idol first. Only once option.
For the other two cards, we choose 2 cards from the remaining 17 cards.
There are a total of $ \binom{17}{2} $ ways to do have an Idol Raven.
There are a total of $ \binom{18}{3} $ ways to choose 3 cards from 18.
$ Pr(A) = \frac{\binom{17}{2}}{\binom{18}{3}} $
$ Pr(A) = \frac{ \frac{17!}{15!2!}}{ \frac{18!}{3!15!}} $
$ Pr(A) = \frac{17!}{15!2!} \cdot \frac{3!15!}{18!} $
$ Pr(A) = \frac{17!}{2!} \cdot \frac{3!}{18!} $
$ Pr(A) = \frac{1}{2!} \cdot \frac{3!}{18} $
$ Pr(A) = \frac{1}{1} \cdot \frac{3}{18} $
$ Pr(A) = \frac{3}{18} $