The size of the set of all strings of length 15 is $ 52^{15} $.
Let’s break this down into 2 cases:
A = the string contains no lowercase letters
There are $ 26^{15} $ ways to choose the characters in the string.
B = the string contains exactly one lowercase letter
There are $ 15 $ ways to choose the position of the lowercase letter.
There are $ 26 $ ways to choose the lowercase letter.
There are $ 26^{14} $ ways to choose the remaining characters.
C = The string contains at least two lowercase letters
$ |C| = |U| - |A| - |B| $
$ |C| = 52^{15} - 26^{15} - 15 \cdot 26 \cdot 26^{14} $
$ |C| = 52^{15} - 26^{15} - 15 \cdot 26^{15} $