BOOKKEEPER
			$\mathbf{Algorithm}\ \IFeelLikeSinging(n)\mathrm{:}$ 
			$\mathbf{if}\ n = 0\ \mathrm{or}\ n = 1$ 
			$\mathbf{then}\ \mathrm{sing}\ {\it O\ Canada}$ 
			$\mathbf{else}\ \mathbf{if}\ n\ \text{is odd}$ 
			$\elsesp \mathbf{then}\ \IFeelLikeSinging(n + 1)$ 
			$\elsesp \mathbf{else}\ \IFeelLikeSinging(\frac{n}{2});$ 
			$\elsesp \elsesp \IFeelLikeSinging(\frac{n}{2} - 1)$ 
			$\elsesp \mathbf{endif};$ 
			$\mathbf{endif}$
		
| $X = \bigg\{$ | $1\ $ | if the red coin flip resulted in heads$,$ | 
| $0\ $ | if the red coin flip resulted in tails$,$ | |
| $Y = \bigg\{$ | $1\ $ | if the blue coin flip resulted in heads$,$ | 
| $0\ $ | if the blue coin flip resulted in tails$,$ | 
			$\WhoGoesFirst(k):$ 
			$\quad \mathbf{if}\ k \geq 1\ \mathbf{then}$ 
			$\quad \quad \text{Alexa rolls the die, let a be the result}$ 
			$\quad \quad \text{May rolls the die, let m be the result}$ 
			$\quad \quad \mathbf{if}\ a > m\ \mathbf{then}$ 
			$\quad \quad \quad \text{print Alexa goes first}$ 
			$\quad \quad \quad \mathbf{return}\ k$ 
			$\quad \quad \mathbf{endif}$ 
			$\quad \quad \mathbf{if}\ a < m\ \mathbf{then}$ 
			$\quad \quad \quad \text{print May goes first}$ 
			$\quad \quad \quad \mathbf{return}\ k$ 
			$\quad \quad \mathbf{endif}$ 
			$\quad \quad \mathbf{if}\ a = m\ \mathbf{then}$ 
			$\quad \quad \quad \WhoGoesFirst(k + 1)$ 
			$\quad \quad \mathbf{endif}$ 
		
For any random variable $X$, $\mathbb{E}\left(1 \middle/ X \right) = 1 / \mathbb{E}(X)$.
| (a) | $k$ of these $n$ students are politically correct and, thus, refuse to say Merry Christmas. Instead, they say Happy Holidays. | 
| (b) | $n - k$ of these $n$ students do not care about political correctness and, thus, they say Merry Christmas. |