$\mathbf{Algorithm}\ \Fib(n)\mathrm{:}$
$\mathbf{if}\ n = 0\ \mathrm{or}\ n = 1$
$\mathbf{then}\ f = n$
$\mathbf{else}\ f = \Fib(n - 1) + \Fib(n - 2)$
$\mathbf{endif};$
$\mathbf{return}\ f$
$\Pr\bigl(A \cup (\overline{B} \cap \overline{C})\bigr) = $ | $\Pr(A) + \Pr(B)\ - $ $\Pr(C).$ |
$//$ | $\text{all coin flips made are mutually}$ $\text{independent}$ |