| $f(0) = $ | $7,$ | 
| $f(n) = $ | $2 \cdot f(n - 1) + 1\; \ \text{for all}$ $\text{integers}\ n \geq 1.$ | 
			$\mathbf{Algorithm}\ \Fib(n)\mathrm{:}$ 
			$\mathbf{if}\ n = 0\ \mathrm{or}\ n = 1$ 
			$\mathbf{then}\ f = n$ 
			$\mathbf{else}\ f = \Fib(n - 1) + \Fib(n - 2)$ 
			$\mathbf{endif};$ 
			$\mathbf{return}\ f$ 
		
			Let $X$ be the number of students who give their gift to themselves. What is the expected value
			$\mathbb{E}(X)$ of the random variable $X$? 
			Hint: Use an indicator random variable for each student.
		
For each $i = 1,2,\dots,n$, let $v_i$ be the value (in dollars) of the gift that student $S_i$ buys. Let $Y$ be the value of the gift that student $S_1$ receives, and let $Z$ be the value of the gift that student $S_2$ receives. What is $\mathbb{E}(2 \cdot Y - Z)$?
| $//$ | $\text{all coin flips made}$ $\text{are mutually independent}$ |